Conference

Invitation for ICF13 Session 49: Soft Matter/Materials

Fractional dynamical systems and signals

Latest SCI Journal Papers on FDA

October 2012

Books

Introduction to the Fractional Calculus of Variations

Fractal Geometry, Complex Dimensions and Zeta Functions

Journals

Fractional Calculus & Applied Analysis

International Journal of Bifurcation and Chaos (IJBC)

Chaos, Solitons & Fractals

Classical Papers

Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids

Fractional calculus and continuous-time finance II: the waiting-time distribution
The 13th International Conference on Fracture (ICF13) will be held in Beijing, China on June 16–21, 2013. This conference is a continuation of the very successful cosmopolitan series of quadrennial conferences. Below is its website:

http://www.icf13.org/

ICF13 is dedicated to the development and innovation in not only the traditional and fundamental topics but also the exciting and edge-cutting arenas—from biomedicine to geophysics, from nano/atomic to macro scales, and from physical to holistic and system modeling.

Here I invite you to contribute an abstract to

Session 49: Soft Matter/Materials

Please noted that the deadline for abstract is the 17th October.

Many thanks for your participation and contribution. We look forward to meeting you at the conference.

Fractional dynamical systems and signals

-----A special session in European Control Conference 2013

http://www.ecc13.ch/
Call for Papers

The goal of this special session is to gather colleagues that work in the field of fractional calculus in order to present the latest results in fractional dynamical systems and signals domain. Papers describing original research work that reflects the recent theoretical advances and experimental results as well as open new issues for research are invited.

This session will cover the following topics (but not limited to):

- Signal analysis and filtering with fractional tools (restoration, reconstruction, analysis of fractal noises,
- Fractional modeling especially of (but not limited to) thermal systems, electrical systems (motors, transformers, skin effect, …), dielectric materials, electrochemical systems (batteries, ultracapacitors, fuel cells, …), mechanical systems (vibration insulation, viscoelastic materials, …), Biological systems (muscles, lungs, …)
- System identification (linear, non linear, MIMO methods, …)
- Systems implementation (fractional controllers and filters implementation, …)
- Systems analysis (Stability, observability, controllability, …)
- Observers
- Control (Fractional PID, CRONE, $H\infty$, …)
- Diagnosis of fractional systems

Submission Deadline: Contributed Papers and special issues must be submitted before October 19, 2012.

Submission Guidelines

Prepare our papers according to recommendations available at

http://www.ecc13.ch/call.html

Contact if you intend to participate

Jocelyn Sabatier
IMS/LAPS: Automatique, Productique, Signal et Image
Université Bordeaux1 - IPB -UMR 5218 CNRS
Bat A4 - 351, Cours de la Libération
33405 Talence Cedex, France
Email: jocelyn.sabatier@u-bordeaux1.fr
Latest SCI Journal Papers on FDA

October 2012

from ISI Web of Science (SCI)

1. Title: Chaos and hyperchaos in fractional-order cellular neural networks
 Author(s): Huang, Xia; Zhao, Zhao; Wang, Zhen; et al.

2. Title: Approximate analytical solutions of Schnakenberg systems by homotopy analysis method
 Author(s): Arafa, A. A. M.; Rida, S. Z.; Mohamed, H.

3. Title: A new Jacobi operational matrix: An application for solving fractional differential equations
 Author(s): Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S.

4. Title: Analytical and numerical methods for the stability analysis of linear fractional delay differential equations
 Author(s): Kaslik, Eva; Sivasundaram, Seenith
 Source: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS Volume: 236 Issue: 16 Special Issue: SI Pages: 4027-4041 DOI: 10.1016/j.cam.2012.03.010 Published: OCT 2012

5. Title: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems
 Author(s): Boroujeni, Elham Amini; Momeni, Hamid Reza

6. Title: Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method
 Author(s): Li, Xinxiu
 Source: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION Volume: 17 Issue: 10 Pages: 3934-3946 DOI: 10.1016/j.cnsns.2012.02.009 Published: OCT 2012
Books

Introduction to the Fractional Calculus of Variations

Agnieszka B Malinowska and Delfim F M Torres

http://www.worldscientific.com/worldscibooks/10.1142/p871

This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler–Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.

The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an
opportunity for an introduction to FCV for experienced researchers. The explanations in the book are
detailed, in order to capture the interest of the curious reader, and the book provides the necessary
background material required to go further into the subject and explore the rich research literature.

Table of contents

• The Classical Calculus of Variations
• Fractional Calculus of Variations via Riemann–Liouville Operators
• Fractional Calculus of Variations via Caputo Operators
• Other Approaches to the Fractional Calculus of Variations
• Towards a Combined Fractional Mechanics and Quantization

Fractal Geometry, Complex Dimensions and Zeta Functions

Michel L. Lapidus and Machiel van Frankenhuijsen

• The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings
• Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations
 of fractal strings, that is, one-dimensional drums with fractal boundary
• Numerous theorems, examples, remarks and illustrations enrich the text
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of
fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry,
Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry,
dynamical systems, spectral geometry, complex analysis, distribution theory, and mathematical physics. The
significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level.
Key Features include:
• The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings
• Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to
 the corresponding fractal geometries and frequency spectra
• Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated
 with a fractal
• Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and
 a geometric tube formula
• The method of Diophantine approximation is used to study self-similar strings and flows
• Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of
number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:
"The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. The book is very well written and organized and the subject is very interesting and actually has many applications."
—Nicolae-Adrian Secelean, Zentralblatt

Table of contents

- Preface
- Overview
- Introduction
- Complex Dimensions of Ordinary Fractal Strings
- Complex Dimensions of Self-Similar Fractal Strings
- Complex Dimensions of Nonlattice Self-Similar Strings
- Generalized Fractal Strings Viewed as Measures
- Explicit Formulas for Generalized Fractal Strings
- The Geometry and the Spectrum of Fractal Strings
- Periodic Orbits of Self-Similar Flows
- Fractal Tube Formulas
- Riemann Hypothesis and Inverse Spectral Problems
- Generalized Cantor Strings and their Oscillations
- Critical Zero of Zeta Functions
- Fractality and Complex Dimensions
- Recent Results and Perspectives
- Appendix A. Zeta Functions in Number Theory
- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics
- Appendix C. An Application of Nevanlinna Theory

Journals

Fractional Calculus & Applied Analysis

Vol. 15, No 4 (2012)
Editorial: FCAA RELATED MEETINGS, BOOKS, IN MEMORIAM (FCAA - Volume 15 - No 4)

B. Duda

FRACTIONAL CALCULUS FOR POWER FUNCTIONS AND EIGENVALUES OF THE FRACTIONAL LAPLACIAN
D. Rostamy, K. Karimi

BERNSTEIN POLYNOMIALS FOR SOLVING FRACTIONAL HEAT- AND WAVE-LIKE EQUATIONS
R.P. Agarwal, S. Arshad, D. O'Regan, V. Lupulescu

FUZZY FRACTIONAL INTEGRAL EQUATIONS UNDER COMPACTNESS TYPE CONDITION
Li Kexue, Peng Jigen, Gao Jinghuai

EXISTENCE RESULTS FOR SEMILINEAR FRACTIONAL DIFFERENTIAL EQUATIONS VIA KURATOWSKI MEASURE OF NONCOMPACTNESS
R.A.C. Ferreira

A UNIQUENESS RESULT FOR A FRACTIONAL DIFFERENTIAL EQUATION
P.A. Williams

FRACTIONAL CALCULUS ON TIME SCALES WITH TAYLOR'S THEOREM
C.-G. Li, M. Kostić, M. Li, S. Piskarev

ON A CLASS OF TIME-FRACTIONAL DIFFERENTIAL EQUATIONS
N.H. Sweilam, M.M. Khader, H.M. Almarwm

NUMERICAL STUDIES FOR THE VARIABLE-ORDER NONLINEAR FRACTIONAL WAVE EQUATION
C.D. Dhaigude, V.R. Nikam

SOLUTION OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING ITERATIVE METHOD
O. Agrawal

SOME GENERALIZED FRACTIONAL CALCULUS OPERATORS AND THEIR APPLICATIONS IN INTEGRAL EQUATIONS
F. Mainardi

AN HISTORICAL PERSPECTIVE ON FRACTIONAL CALCULUS IN LINEAR VISCOELASTICITY
R.R. Nigmatullin, D. Baleanu

THE DERIVATION OF THE GENERALIZED FUNCTIONAL EQUATIONS DESCRIBING SELF-SIMILAR
International Journal of Bifurcation and Chaos (IJBC) in Applied Sciences and Engineering

Volume 22, Number 8
http://www.worldscientific.com/worldscinet/ijbc

Tutorials and Reviews

The Homotopy Analysis Method in Bifurcation Analysis Of Delay Differential Equations
Andrea Bel, Walter Reartes

Performance Comparison of Differential Evolution and Soma on Chaos Control Optimization Problems
Roman Senkerik, Donald Davendra, Ivan Zelinka, Zuzana Oplatkova, Roman Jasek

Self-Organization of Lösch's Hexagons in Economic Agglomeration For Core-Periphery Models
Kiyohiro Ikeda, Kazuo Murota, Takashi Akamatsu

Autowaves in Memristive Cellular Neural Networks
Viet-Thanh Pham, Arturo Buscarino, Luigi Fortuna, Mattia Frasca

The World's Colonization and Trade Routes Formation As Imitated By Slime Mould
Andrew Adamatzky

Papers

Attractors and Their Invisible Parts For Skew Products With High Dimensional Fiber
F. H. Ghane, M. Nazari, M. Saleh, Z. Shabani

Chaos Synchronization of Chen Systems With Time-Varying Delays
Jianeng Tang, Cairaong Zou, Shaoping Wang, Li Zhao, Pingxiang Liu

Dynamics of First Order Equations With Nonlinear Delayed Feedback
D. Kaschenko, S. Kaschenko, W. Schwarz
Reshaping Modulation Profile To Decrease and Increase The Threshold For Chaotic Behavior In A Pump-Modulation Nd:YVO₄ Laser
Ming-Dar Wei, Chih-Chang Hsu

Bifurcation Analysis of A Discrete-Time Kaldor Model of Business Cycle
Xing He, Chuandong Li, Yonglu Shu

Hyperbolic-Like Properties of Popp's Attractor
Andrzej Stefański, Jerzy Wojewoda, Agnieszka Chudzik, Tomasz Kapitaniak

Symmetry and Conservation Law Classification and Exact Solutions To The Generalized Kdv Types Of Equations
Hanze Liu, Jibin Li, Lei Liu

Limit Cycle Bifurcations Near A Double Homoclinic Loop With A Nilpotent Saddle
Maoan Han, Junmin Yang, Dongmei Xiao

Vector Fields, Variational Equations and Commutators
Willi-Hans Steeb, Yorick Hardy, Igor Tanski

Bifurcations Of 2-2-1 Heterodimensional Cycles Under Transversality Condition
Dan Liu, Maoan Han, Weipeng Zhang

Piecewise Smooth Reversible Dynamical Systems At A Two-Fold Singularity
A. Jacquemard, M. A. Teixeira, D. J. Tonon

Perturbed Behavior For The Model of Wave Propagation In A Nonlinear Dispersive Nonconservative Media
Guoxiang Yu, Jun Yu

Surface Fitting and Error Analysis Using Fractal Interpolation
Hong-Yong Wang, Jia-Bing Ji

Essential Entropy-Carrying Horseshoes As Set Limits
Steven M. Pederson

Periodic Solution of Certain Nonlinear Differential Equations: Via Topological Degree Theory and Matrix Spectral Theory
Yong-Hui Xia

Generalized Hopf Bifurcation in A Frequency Domain Formulation
A. M. Torresi, G. L. Calandrini, P. A. Bonfili, J. L. Moiola

Analytic Center of Nilpotent Critical Points
Tao Liu, Lianggang Wu, Feng Li
Uncovering Missing Symbols in Communication With Filtered Chaotic Signals
Hai-Peng Ren, Murilo S. Baptista, Celso Grebogi

Two Kinds of Horseshoes in A Hyperchaotic Neural Network
Qingdu Li, Xiao-Song Yang

A New Data Rate Adaption Communications Scheme For Code-Shifted Differential Chaos Shift Keying Modulation
W. K. Xu, L. Wang, G. Kolumbán

Horseshoe Chaos in A Hybrid Planar Dynamical System
Qing-Ju Fan

Hopf Bifurcation of Liénard Systems By Perturbing A Nilpotent Center
Jing Su, Junmin Yang, Maoan Han

Nonlinear Behaviors of Gear Shifting Digital Phase Locked Loops
Xi Chen, Bingo Wing-Kuen Ling, Li-Min Sun

Memristor Model and Its Application For Chaos Generation
Lidan Wang, Emmanuel Drakakis, Shukai Duan, Pengfei He, Xiaofeng Liao

Stability of the Cournot equilibrium for a Cournot oligopoly model with n competitors
Marek Lampart

Visibility graph approach to the analysis of ocean tidal records
Luciano Telesca, Michele Lovallo, Jorge O. Pierini

Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control
Yingli Li, Daolin Xu, Yiming Fu, Jiaxi Zhou

Dynamics and chaos control of gyrostat satellite
Vladimir Aslanov, Vadim Yudintsev
Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems
Mohamadreza Ahmadi, Hamed Mojallali

Stability of matter–wave soliton in a time-dependent complicated trap
Etienne Wamba, Serge Y. Doka, Thierry B. Ekogo, Alidou Mohamadou, Timoleon C. Kofane

Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm
Zhenguo Bai, Yicang Zhou

Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center
Jihua Wang

Optimal feedback control of the forced van der Pol system
T.P. Chagas, B.A. Toledo, E.L. Rempel, A.C.-L. Chian, J.A. Valdivia

Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations
Jiafu Wang, Lihong Huang

Community structure in real-world networks from a non-parametrical synchronization-based dynamical approach
Abdelmalik Moujahid, Alicia d’Anjou, Blanca Cases

Dynamic properties for the induced maps in the symmetric products
José L. Gómez-Rueda, Alejandro Illanes, Héctor Méndez

Strange chaotic triangular maps
Marta Štefánková

Decay of Fourier modes of solutions to the dissipative surface quasi-geostrophic equations on a finite domain
Nikolai Chernov, Dong Li

Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination

Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity
Luca Mesin
Semi-discrete DNA breather in Peyrard–Bishop–Dauxois model with fifth-order-approximation Morse potential
Husin Alatas, Dede Hermanudin

Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics
Chengyi Xia, Juan Wang, Li Wang, Shiwen Sun, Junqing Sun, Jinsong Wang

q-Shock soliton evolution
Oktay K. Pashaev, Sengul Nalci

Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control
Jing Zhang, Daolin Xu, Jiaxi Zhou, Yingli Li

Fractional nonholonomic Ricci flows
Sergiu I. Vacaru

Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting
Jianzhou Wang, Ruiling Jia, Weigang Zhao, Jie Wu, Yao Dong

Classical Papers

Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids

Yuriy A. Rossikhin and Marina V. Shitikova
http://dx.doi.org/10.1115/1.3101682

Abstract: The aim of this review article is to collect together separated results of research in the application of fractional derivatives and other fractional operators to problems connected with vibrations and waves in solids having hereditarily elastic properties, to make critical evaluations, and thereby to help mechanical engineers who use fractional derivative models of solids in their work. Since the fractional derivatives used in the simplest
viscoelastic models (Kelvin-Voigt, Maxwell, and standard linear solid) are equivalent to the weakly singular kernels of the hereditary theory of elasticity, then the papers wherein the hereditary operators with weakly singular kernels are harnessed in dynamic problems are also included in the review. Merits and demerits of the simplest fractional calculus viscoelastic models, which manifest themselves during application of such models in the problems of forced and damped vibrations of linear and nonlinear hereditarily elastic bodies, propagation of stationary and transient waves in such bodies, as well as in other dynamic problems, are demonstrated with numerous examples. As this takes place, a comparison between the results obtained and the results found for the similar problems using viscoelastic models with integer derivatives is carried out. The methods of Laplace, Fourier and other integral transforms, the approximate methods based on the perturbation technique, as well as numerical methods are used as the methods of solution of the enumerated problems.

Fractional calculus and continuous-time finance II: the waiting-time distribution

Francesco Mainardi, Marco Raberto, Rudolf Gorenflo, Enrico Scalas

Abstract: We complement the theory of tick-by-tick dynamics of financial markets based on a continuous-time random walk (CTRW) model recently proposed by Scalas et al. (Physica A 284 (2000) 376), and we point out its consistency with the behaviour observed in the waiting-time distribution for BUND future prices traded at LIFFE, London.

The End of This Issue