Conferences

ICAAM2012 — First International Conference on Analysis and Applied Mathematics

Books

Turbulence and Diffusion: Scaling Versus Equations (Springer Series in Synergetics)

Journals

International Journal of Bifurcation and Chaos (IJBC)

Communications in Nonlinear Science and Numerical Simulation

Classical Papers

An Extension Problem Related to the Fractional Laplacian

Fractional Laplacian in bounded domains

Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
Conferences

ICAAM2012 — First International Conference on Analysis and Applied Mathematics

18 Oct 2012 → 21 Oct 2012; Gumushane, Turkey

http://icaam2012.gumushane.edu.tr/index/

Abstract: We are proud to announce the First International Conference on Analysis and Applied Mathematics. The aim of this conference is to bring together mathematicians working in the area of analysis and applied mathematics to share new trends of applications of math. In mathematics, the developments in the field of applied mathematics open new research areas in analysis and vice versa. That is why, we plan to found a journal to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of analysis and applied mathematics.

Contact: Asst. Prof. Dr. Zafer CAKIR Gumushane University Engineering Faculty Mathematical Engineering Chair of Department;
Phone: [+905362732100];
Email: icaam2012@gumushane.edu.tr
Books

Turbulence and Diffusion: Scaling Versus Equations (Springer Series in Synergetics)

Oleg G. Bakunin

Main description

This book is an introduction to the multidisciplinary field of anomalous diffusion in complex systems, with emphasis on the scaling approach as opposed to techniques based on the quantitative analysis of underlying transport equations. Typical examples of such systems are turbulent plasmas, convective rolls, zonal flow systems and stochastic magnetic fields.

From the more methodological point of view, the approach relies on the general use of correlations estimates, quasilinear equations and continuous time random walk techniques. Yet, the mathematical descriptions are not meant to become a fixed set of recipes but rather develop and strengthen the reader's physical intuition and understanding on the underlying mechanisms involved.

Most of the material stems from class-tested lectures, where graduate students where assumed to have a working knowledge of classical physics, fluid dynamics and plasma physics but otherwise no prior knowledge of the subject matter is assumed from the side of the reader.

Journals

Theme Section: Complex Network Systems — From Theory To Applications

Editorial
R. Criado, M. Romance, Y. Moreno, J. Gómez-Gardeñes

Theme Section: Complex Network Systems — From Theory To Applications: Tutorials And Reviews

Unsupervised Clustering Analysis: A Multiscale Complex Networks Approach
Clara Granell, Sergio Gómez, Alex Arenas

Theme Section: Complex Network Systems — From Theory To Applications: Papers

Complex Networks Evolutionary Dynamics Using Genetic Algorithms
Daniel Aguilar-Hidalgo, Antonio Córdoba Zurita, Ma Carmen Lemos Fernández

Topological Versus Dynamical Robustness In A Lexical Network
Javier Borge-Holthoefer, Yamir Moreno, Alex Arenas

Redundancy In Functional Brain Connectivity From Eeg Recordings
Fabrizio De Vico Fallani, Jlenia Toppi, Claudia Di Lanzo, Giovanni Vecchiato, Laura Astolfi, Gianluca Borghini, Donatella Mattia, Febo Cincotti, Fabio Babiloni

Reliability Of Optimal Linear Projection Of Growing Scale-Free Networks
Pau Erola, Javier Borge-Holthoefer, Sergio Gomez, Alex Arenas

Detecting Series Periodicity With Horizontal Visibility Graphs
Angel Nuñez, Lucas Lacasa, Eusebio Valero, Jose Patricio Gómez, Bartolo Luque

Pacemakers In A Cayley Tree Of Kuramoto Oscillators
Pablo M. Gleiser, Luce Prignano, Conrad J. Pérez-Vicente, Albert Diaz-Guilera

A Model To Classify Users Of Social Networks Based On Pagerank
Francisco Pedroche
A Post-Processing Method For Interest Point Location In Images By Using Weighted Line-Graph Complex Networks
Regino Criado, Miguel Romance, Ángel Sánchez

Dynamics Of Persistent Infections In Homogeneous Populations
Joaquín Sanz, Luis Mario Floría, Yamir Moreno

Exploring The Kibble–Zurek Mechanism In A Secondary Bifurcation
M. A. Miranda, J. Burguete, W. González-Viñas, H. Mancini

Hybrid Recommendation Algorithm Based On Two Roles Of Social Tags
Zi-Ke Zhang, Chuang Liu

Theme Section: Dynamics And Processes Of Complex Networks

Editorial
M. Zanin, R. Gutiérrez, R. Bajo, J. M. Buldú, D. Papo, S. Boccaletti

Theme Section: Dynamics And Processes Of Complex Networks: Papers

Nonlocal Analysis Of Modular Roles
J. M. Buldú, I. Sendiña-Nadal, I. Leyva, J. A. Almendral, M. Zanin, S. Boccaletti

Adaptive Growing Networks Coevolving With The Spread Of Diseases
Beniamino Guerra, Jesús Gómez-Gardeñes, Vito Latora

Complex Dynamical Behaviors Of Deflection Routing On Grid Networks
Wilson Wang-Kit Thong, Guanrong Chen

Effects Of Traffic Properties And Degree Heterogeneity In Flow Fluctuations On Complex Networks
Sandro Meloni, Jesús Gómez-Gardeñes, Vito Latora, Yamir Moreno

Hierarchical Multiresolution Method To Overcome The Resolution Limit In Complex Networks
Clara Granell, Sergio Gómez, Alex Arenas

Saddle-Node Bifurcation Cascades And Associated Traveling Waves In Weakly Coupling Cml
Ma Dolores Sotelo Herrera, Jesús San Martín, Lucia Cerrada

Bifurcations In A Star-Like Network Of Stuart–Landau Oscillators
Mattia Frasca, André Bergner, Jürgen Kurths, Luigi Fortuna

Structure And Dynamics: The Transition From Nonequilibrium To Equilibrium In Integrate-And-Fire Dynamics
Cesar H. Comin, João L. B. Batista, Matheus P. Viana, Luciano Da F. Costa, Bruno A. N. Travençolo, Marcus Kaiser

Noise-Induced Up/Down Dynamics In Scale-Free Neuronal Networks
Jordi Grau-Moya, Antonio J. Pons, Jordi Garcia-Ojalvo

Pinning Impulsive Stabilization Of Nonlinear Dynamical Networks With Time-Varying Delay
Jianquan Lu, Zidong Wang, Jinde Cao, Daniel W.C. Ho, Jürgen Kurths

Targeting And Control Of Synchronization In Chaotic Oscillators
E. Padmanaban, Ranjib Banerjee, Shyamal Kumar Dana

Global And Partial Phase Synchronizations In Arrays Of Piecewise Linear Time-Delay Systems
R. Suresh, D. V. Senthilkumar, M. Lakshmanan, J. Kurths

Synchronization Of Moving Integrate And Fire Oscillators
Luce Prignano, Oleguer Sagarra, Pablo M. Gleiser, Albert Diaz-Guilera

Modeling The Evolution Of Item Rating Networks Using Time-Domain Preferential Attachment
Edmundo F. Lavia, Ariel Chernomoretz, Javier M. Buldú, Massimiliano Zanin, Pablo Balenzuela

Dependency Network And Node Influence: Application To The Study Of Financial Markets
Dror Y. Kenett, Tobias Preis, Gitit Gur-Gershgoren, Eshel Ben-Jacob

Communications in Nonlinear Science and Numerical Simulation
Volume 17, Issue 12

Short Communications
Exponential stability of second-order stochastic evolution equations with Poisson jumps
R. Sakthivel, Y. Ren

Self-similar solutions with elliptic symmetry for the compressible Euler and Navier–Stokes equations in \(\mathbb{R}^N \)
Manwai Yuen

Equivalent linearization method for the flutter system of an airfoil with multiple nonlinearities
F.X. Chen, Y.M. Chen, J.K. Liu

Amit Pande, Joseph Zambreno, Prasant Mohapatra

Comments on “arithmetic coding as a non-linear dynamical system”

Review

Soliton dispersion management in nonlinear optical fibers
R. Ganapathy

Articles

Upper and lower solutions method for regular singular differential equations with quasi-derivative boundary conditions
Amit K. Verma, Ravi P. Agarwal

Applications of some transformations for several variable-coefficient nonlinear evolution equations from plasma physics, arterial mechanics, nonlinear optics and Bose–Einstein condensates
Wen-Rui Shan, Bo Tian

Point-wise errors of two conservative difference schemes for the Klein–Gordon–Schrödinger equation
Tingchun Wang, Yong Jiang

Application of Avery–Peterson fixed point theorem to nonlinear boundary value problem of fractional differential equation with the Caputo’s derivative
Yang Liu

Invariant solutions for equations of axion electrodynamics
A.G. Nikitin, Oksana Kuriksha

Numerical solution of nonlinear Jaulent–Miodek and Whitham–Broer–Kaup equations
Akbar Mohebbi, Zohreh Asgari, Mehdi Dehghan

Nonlinear functions and the norm of the propagators of operational equations
Yu Lin, Ti-Jun Xiao, Jin Liang, Ting-Wen Huang

Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions
R.C. Mittal, R.K. Jain

Coupling Bäcklund transformation of Riccati equation and division theorem method for traveling wave solutions of some class of NLPDEs
Bin Lu

A new approach for solving a class of nonlinear integro-differential equations
I.L. El-Kalla

Dissipative perturbations for the $K(n, n)$Rosenau–Hyman equation
Julio Garralón, Francisco R. Villatoro

Chaos in nonautonomous discrete dynamical systems
J. Dvořáková

An image encryption scheme based on quantum logistic map
A. Akhshani, A. Akhavan, S.-C. Lim, Z. Hassan

Applications of Dynamical System Theory
Recent developments in applications of dynamical system theory
Elbert E.N. Macau, Albert C.-J. Luo

Locally oriented potential field for controlling multi-robots
Roseli A.F. Romero, Edson Prestes, Marco A.P. Idiart, Gedson Faria

Architectures, stability and optimization for clock distribution networks
Rodrigo Carareto, Fernando M. Orsatti, José Roberto C. Piqueira

Bifurcations of non-smooth systems
Fabiola Angulo, Gerard Olivar, Gustavo A. Osorio, Carlos M. Escobar, Jocirei D. Ferreira, Johan M. Redondo

Dynamical analysis of turbulence in fusion plasmas and nonlinear waves

Extracellular potassium dynamics in the hyperexcitable state of the neuronal ictal activity
Gerson Florence, Tiago Pereira, Jürgen Kurths

Chaos-based communication systems in non-ideal channels

Special section on Celestial Mechanics and Applications 3rd Conference on Nonlinear Science and Complexity 2010 – NSC10
C. Galeş

Intelligent control of chaos using linear feedback controller and neural network identifier
Robust exponential stability and delayed-state-feedback stabilization of uncertain impulsive stochastic systems with time-varying delay
Pei Cheng, Feiqi Deng, Yunjian Peng

Dynamic behaviors of a delayed HIV model with stage-structure
Pengmiao Hao, Dejun Fan, Junjie Wei, Qinghe Liu

Semiconductor ring laser subject to delayed optical feedback: Bifurcations and stability
Ilya V. Ermakov, Guy Van der Sande, Jan Danckaert

Stochastic exponential robust stability of interval neural networks with reaction–diffusion terms and mixed delays
Xiaohui Xu, Jiye Zhang, Weihua Zhang

An adaptive robust controller for time delay maglev transportation systems
Reza Hamidi Milani, Hassan Zarabadipour, Reza Shahnazi

Finite-time H_{∞} control for a class of discrete-time switched time-delay systems with quantized feedback
Haiyu Song, Li Yu, Dan Zhang, Wen-An Zhang

Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials
S. Sedaghat, Y. Ordokhani, Mehdi Dehghan

Krill herd: A new bio-inspired optimization algorithm
Amir Hossein Gandomi, Amir Hossein Alavi

A novel GCM chaotic neural network for information processing
Tao Wang, Nuo Jia, Kejun Wang

Modeling on an ecological food chain with recycling
Qinghua Cai, Zakaria Mohamad, Yuan Yuan

Determination of minimum required damping in stochastic following seas modeled by using Gaussian white noise
E. Üçer, M. Söylemez

Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties
W.K. Wong, Hongjie Li, S.Y.S. Leung

Model-free control of Lorenz chaos using an approximate optimal control strategy
Shuai Li, Yangming Li, Bu Liu, Timmy Murray

Implementation of orbital attitude control laws on a nonholonomic platform
Hossein Karimpour, Mehdi Keshmiri, Mojtaba Mahzoon

Analysis of generalized projective synchronization for a chaotic gyroscope with a periodic gyroscope
Fuhong Min

A new space–time discretization for the Swift–Hohenberg equation that strictly respects the Lyapunov functional
Hector Gomez, Xesús Nogueira

On symmetries of stochastic differential equations
Roman Kozlov

Non-negative solutions of systems of ODEs with coupled boundary conditions
Gennaro Infante, Feliz M. Minhós, Paolamaria Pietramala

The existence of solutions for boundary value problem of fractional hybrid differential equations
Shurong Sun, Yige Zhao, Zhenlai Han, Yanan Li

Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations
Wei Zhang, Housheng Su, Hongwei Wang, Zhengzhi Han

Symmetry analysis of the nonhomogeneous inviscid Burgers equation with delay
Jessada Tantanuch

Nonlinear Waves and Solitons
Externally forced triads of resonantly interacting waves: Boundedness and integrability properties
Jamie Harris, Miguel D. Bustamante, Colm Connaughton

Nonlinear Fluid and Heat Transfer
Environmental dispersion in a tidal flow through a depth-dominated wetland
Zi Wu, L. Zeng, G.Q. Chen, Z. Li, Ling Shao, P. Wang, Z. Jiang

Helical flows of a heated generalized Oldroyd-B fluid subject to a time-dependent shear stress in porous medium
Chunrui Li, Liancun Zheng, Yue Zhang, Lianxi Ma, Xinxin Zhang

Nonlinear rotating convection in a sparsely packed porous medium
A. Benerji Babu, Ragoju Ravi, S.G. Tagare

Unsteady viscous flow over a rotating stretchable disk with deceleration
Tiegang Fang, Hua Tao

Fractional calculus modelling for unsteady unidirectional flow of incompressible fluids with time-dependent viscosity
Roberto Garra, Federico Polito

Chaos and Complexity

Wavelet-based two-level methods for image restoration
Liang-Jian Deng, Ting-Zhu Huang, Xi-Le Zhao

Stable and generalized-t distributions and applications

Chaotic convergence of the decision-directed blind equalization algorithm
Diogo C. Soriano, Everton Z. Nadalin, Ricardo Suyama, João M.T. Romano, Romis Attux

Distributed source coding using chaos-based cryptosystem
Junwei Zhou, Kwok-Wo Wong, Jianyong Chen

Applications of Dynamical System Theory

Modeling and analysis of the spread of computer virus
Qingyi Zhu, Xiaofan Yang, Jianguo Ren

Analysis of hepatitis C viral dynamics using Latin hypercube sampling
Gaurav Pachpute, Siddhartha P. Chakrabarty

Fractional Dynamics

On the stochastic response of a fractionally-damped Duffing oscillator
Giuseppe Failla, Antonina Pirrotta

Semilinear fractional differential equations based on a new integral operator approach
Xiao-Li Ding, Yao-Lin Jiang

A unified approach to fractional derivatives
Manuel D. Ortigueira, Juan J. Trujillo

Parameter estimation and topology identification of uncertain fractional order complex networks
Gangquan Si, Zhiyong Sun, Hongying Zhang, Yanbin Zhang

Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control
Manuel Pérez-Molina, Manuel F. Pérez-Polo

Nonlinear Vibration
The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk
Qinkai Han, Fulei Chu

Second-order approximation of angle-ply composite laminated thin plate under combined excitations
M. Sayed, A.A. Mousa

Temporal and spectral responses of a softening Duffing oscillator undergoing route-to-chaos
Meng-Kun Liu, C. Steve Suh

Triple-zero bifurcation in van der Pol’s oscillator with delayed feedback
Xing He, Chuandong Li, Yonglu Shu

Optimal combination of spatial basis functions for the model reduction of nonlinear distributed parameter systems
Mian Jiang, Hua Deng

Nonlinear Cournot oligopoly games with isoelastic demand function: The effects of different behavior rules
Xing Gao, Weijun Zhong, Shue Mei

Steady state bifurcation of a periodically excited system under delayed feedback controls
A.Y.T. Leung, Zhongjin Guo, Alan Myers

Rollers in low-head dams – Challenges and solutions
Piroz Zamankhan

Letters to the Editors
Comment on: The \((G'/G)\)-expansion method for the nonlinear lattice equations
İsmail Aslan

Comment on: “Some exact solutions of KdV equation with variable coefficients”
Olena Magda

Response to the comments on “Design of sliding mode controller for a class of fractional-order chaotic systems”
Chun Yin, Shou-ming Zhong, Wu-fan Chen

Corrigenda
Corrigendum to “Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow”
Robert A. Van Gorder, K. Vajravelu
Corrigendum to “Global asymptotic stability of a stochastic Lotka–Volterra model with infinite delays”
Meng Liu, Ke Wang

Classical Papers

An Extension Problem Related to the Fractional Laplacian

Luis Caffarellia & Luis Silvestre

Abstract

The operator square root of the Laplacian \((-\Delta)^{1/2}\) can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.

Fractional Laplacian in bounded domains

A. Zoia, A. Rosso and M. Kardar

Abstract

The fractional Laplacian operator \(-(-\Delta)^{a/2}\) appears in a wide class of physical systems, including Lévy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator
which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely, hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalue spectrum are also obtained.

Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency

W. Chen, S. Holm

Abstract

Frequency-dependent attenuation typically obeys an empirical power law with an exponent ranging from 0 to 2. The standard time-domain partial differential equation models can describe merely two extreme cases of frequency-independent and frequency-squared dependent attenuations. The otherwise nonzero and nonsquare frequency dependency occurring in many cases of practical interest is thus often called the anomalous attenuation. In this study, a linear integro-differential equation wave model was developed for the anomalous attenuation by using the space-fractional Laplacian operation, and the strategy is then extended to the nonlinear Burgers equation. A new definition of the fractional Laplacian is also introduced which naturally includes the boundary conditions and has inherent regularization to ease the hypersingularity in the conventional fractional Laplacian. Under the Szabo's smallness approximation, where attenuation is assumed to be much smaller than the wave number, the linear model is found consistent with arbitrary frequency power-law dependency.

The End of This Issue